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Abstract--Power-law fault size (throw) distributions spanning ca seven orders of magnitude are analysed using 
sample lines from seismic, coal-mine plan and outcrop data sets. Outcrop data sets generally have lower power- 
law exponent values than seismic data sets, consistent with a general decrease in exponent value with decrease in 
fault size. If such a relationship does exist, then probably it cannot be accounted for by sampling bias alone. We 
stiggest that either: (i) fault size populations are not power-law over a large scale range; or (ii) they are power- 
law, but at smaller scales show a greater range of exponent values due to spatial clustering. 

INTRODUCTION 

In recent years, many authors, including ourselves, have 
claimed that the size populations of faults are often 
described by power-law distributions (Kakimi 1980, 
Childs et al. 1990, Scholz & Cowie, 1990, Marrett & 
Walsh et al. 1991, Allmendinger 1992, Jackson & San- 
derson 1992, Yielding et al. 1992), where size is ex- 
pressed either as displacement or dimension. This 
relationship can be expressed as 

N o: S - C  

where N is the number of faults with size greater than or 
equal to S and C is the power-law exponent. When this 
function is plotted on log-log axes, a straight line of 
slope - C  results. Fault systems analysed using either 
line (one-dimensional) or map (two-dimensional) 
samples have a range of C values; line sample throw 
populations have, for example, C values in the range 
0.4--1.0. The power-law nature of fault size distributions 
are consistent with fault systems being either self-similar 
or self-affine fractals and provides a basis for both 
quantitative definition of a fault size scaling law and 
predictions beyond data windows. For some time, we 
have been concerned that there appears to be a system- 
atic variation of the results according to the type of fault 
data used. The C value derived from outcrop data often 
seemed to have values towards the lower end of the 
range (ca 0.4-0.6) while values from seismic data sets 
tended towards the higher end (ca 0.8-1.0). Values 
derived from coal-mine data appeared to be concen- 
trated towards the middle of the range (ca 0.5-0.8). 
Although size distributions of larger faults tend to have 
higher exponent values than do smaller faults, the exist- 
ence of a systematic relationship is still uncertain. Such a 
relationship could arise from one or more of the follow- 
ing possibilities. 

(i) Fault population size distribution curves are not 
straight when a wide enough range of fault sizes (> ca 
two orders of magnitude) is included in the sample. If 
the size distribution of faults over the full size range is 
described by a relatively gentle curve of some type, 

individual parts of the curve spanning only one-two 
orders of magnitude could well appear to be straight. 

(ii) Data from outcrops, coal-mine plans and seismics 
differ not only in the sizes of faults which are sampled, 
but also in their sampling biases. For example, a sam- 
pling bias favouring the sampling of lower C value 
subsets at smaller scales (i.e. outcrop data sets) could 
occur if the spatial distribution of faults within a fault 
system is such that C varies spatially (Yielding et al. 
1992, Walsh et al. 1994). 

(iii) That smaller faults form distinct populations 
within individual lithological units, whereas larger faults 
form a single population controlled by the 'average' 
lithology of the sequence which they intersect (Walsh et 
al. 1994). 

The difficulty of deciding between these three possi- 
bilities is almost entirely due to the restricted ranges of 
individual data sets. Whereas the size range of faults in a 
single fault system may span up to eight orders of 
magnitude, the size range in an individual data set is 
rarely greater than two orders of magnitude. In only a 
few cases (Walsh et al. 1991, Yielding et al. 1992) has the 
power-law size distribution of faults been tested on 
single data sets spanning more than three orders of 
magnitude of fault size. 

THE DATA 

The fault size distributions used are those obtained by 
one-dimensional sampling of throw values from normal 
fault systems (Childs et al. 1990, Walsh et al. 1994). A 
previous attempt to test for a systematic relationship 
between C and data type in one-dimensional samples 
appeared to show that none exists (Walsh et al. 1994). 
We have now repeated the test, but have excluded from 
consideration all data sets which do not meet three 
quality criteria when plotted as log cumulative number 
vs log throw size. A sample must include 30 or more fault 
throw values (for single-line data sets used, the average 
number is 152 and the average number is 432 for multi- 
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line data sets). The central part of the distribution must 
define a straight line; stepped lines resulting from round- 
ing of throw measurements are accepted. The straight- 
line segment of each plot must extend over a minimum 
range of one order of magnitude of throw size. The 
sources and characteristics of the 33 data sets meeting 
these criteria are shown in Table 1. Although 53 data 
sets did not meet the criteria, the criteria are neverthe- 
less insufficiently rigorous. Three data sets which stand 
out as significantly different from the others on most 
plots would probably have been excluded had more 
rigorous selection criteria been adopted; these are the 
Flamborough Head, Cumbrian Opencast and Star 
Crossing data sets. The Flamborough Head data set is 
the only one which includes throw measurements from a 
significant number (ca 24%) of strike-slip and oblique- 
slip faults (Peacock & Sanderson 1994) and should 
probably have been excluded. The Cumbrian Opencast 
data set derives from an exploration coal-seam plan 
constructed from widely spaced (ca 40 m) borehold data 
and is believed to be of low quality and, with hindsight, 
should have been rejected. The Star Crossing data are 
from faulted glacial sands which marks them as atypical, 
but two other data sets from glacial sands which are 
included do not stand out from the other data sets on any 
plot. 

Data from the selected 33 data sets are plotted in Fig. 
1 a s  a slope vs mid-point throw, with individual data sets 
categorized by the  type of source data, i.e. outcrop, 
coal-mine plans, seismic. The three distinctive data sets 
are also identified. The mid-point throw is the throw at 
the mid-point of the straight-line segment of the size 
distribution curve and slope is the absolute value of the 
gradient of the straight-line segment, i .e .C.  There is a 
tendency for slope values to decrease with decrease in 
mid-point size; this decrease in slope is especially 
marked if the three distinctive data sets are excluded 
from consideration. Slope values for outcrop data are 
generally less than those for seismic data sets, while coal- 
mine data occupy the middle of the range. Given the 
relatively small number of data sets and the relatively 
wide variation in slope at any given mid-point size, the 
relationship between slope and mid-point range could 
be fortuitous. We take the view that the correlation is 
probably real but is certainly not proven. If real, the 
question is whether or not this relationship represents a 
genuine change in scaling properties of faults with 
change in size, or whether it is due to some other cause, 
e.g. sampling bias. 

SAMPLING BIAS 

Fault density 

Fault densities vary with the type of data set for both 
cultural and logistical reasons. Outcrops which are 
sampled tend to b~those with moderate-high densities 
because of the requirement for a relatively large number 
of faults along an uninterrupted outcrop. The highest 
fault densities are unlikely to be sampled in outcrop 
because intensely fractured outcrops are usually poorly 
exposed and high fracture densities are uncommon in 
temporary exposures, opencast coal workings for 
example, because densely faulted sequences are uneco- 
nomic to work. Underground coal-mine data sets tend to 
have low densities because even moderately faulted 
areas cannot be mined economically. 

Some oilfield data sets may also have low fault den- 
sities but, given typical resolutions and survey areas, low 
density data sets will usually have too few faults to 
provide an acceptable sample. Highly faulted reservoirs, 
on the other hand, may give rise to poor quality seismic 
data or may even be uneconomic and not seismically 
surveyed. The tendency for moderate fault densities to 
be over-represented in coal-mine and seismic data sets is 
reinforced by the common use of multi-line sampling 
which enables a robust data set to be obtained with fewer 
throw readings per km sample line than is possible with 
single-line sampling. All but two of the coal-mine and 
seismic data sets used here are multi-line samples with 
between 10 and 60 lines. Use of a multi-line sample 
appears not to influence the C value (Childs et al. 
1990). 

The possibility has been investigated that systematic 
density differences between the different data set types 
could be responsible for the positive correlation be- 
tween mid-point size (which is dependent on the type of 
data) and C (Fig. 1) by plotting C vs standardized fault 
density (Fig. 2). Standardized fault density is taken as 
the density of fault throws above a specified size, which 
is the same for all the data sets and is here taken as I m. 
Determination of the standardized density of a seismic 
data set requires downwards extrapolation to 1 m of the 
straight-line segment of the size distribution curve. The 
curves for some of the outcrop data sets require extrapo- 
lation up to 1 m throw. Density estimates obtained using 
these limited extrapolations are not significantly affec- 
ted by whether or not the curves are strictly power-law. 

Although standardized density values for outcrop 
data are often higher than those for seismic and coal- 
mine data, Fig. 2 shows no clear relationship between 
standardized density and C. The effect on C of density 
variations within individual data sets or fault systems is 
considered later. 

Given the wide size range of faults which occur, the 
use of varied sampling techniques cannot be avoided and 
there is no certainty whether any technique provides a 
size sample which is 'representative' of the whole. 
Sample attributes which could possibly influence the size 
distribution systematics include variations in fault den- 
sity, sample-line length and sample size range. 

Sample-line length 

Sampled fault size distributions could vary systemati- 
cally with sample-line lengths. A correlation between C 
and sample-line length would be inevitable if C varied 
systematically with data type, given that sample-line 
length varies systematically with data type, i.e. seismic 
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Fig. 1. Exponent of the size distribution, C, vs line mid-point throw 
for 22 outcrop (open squares), coal-mine plan (crosses) and off-shore 
seismic (open circles) data sets from the U.K. and North Sea (see 
Table 1). Note that where multiple populations are sampled from the 
same locality, average values weighted for the number of faults in each 
sample are plotted. Line mid-point throw is the throw at the mid-point 
of the straight-line segment of the one-dimensional throw population 
curve and C is determined by fitting a line by eye to the straight-line 
segment of each data set and is equivalent to negative slope of the 
segment. Symbols: SC = Star Crossing, FH = Flamborough Head, 

CO = Cumbrian Opencast (see Table 1 for further details). 
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Fig. 2. Exponent of the size distribution, C, vs fault density for each of 
the locations in Table 1. Standardized fault densities are derived for 
faults with throws -> 1 m/km of sample line. Calculation of 
standardized densities required extrapolation of both seismic and of 
some outcrop power-law curves to CUMFD (cumulative number of 
faults per km of sample-line length) at 1 m fault throw and are 
therefore not wholly independent of the estimated C; despite this 
factor, no clear relationship is observed between density and slope. 

Symbols and notation as for Fig. 1. 
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and mine-plan sample lines are nearly always longer 
than outcrop sample lines. However, C shows no corre- 
lation with sample-line length (Fig. 3a). A plot (Fig. 3b) 
of slope vs number of faults on single-line samples shows 
a weak correlation for all but three data sets; this is not 
surprising, since the number of faults in a given size 
range will vary with C. 

The effect on C of the ratio of sample-line length to 
fault size can be examined on a plot of maximum throw 
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Fig. 3. (a) Maximum throw vs sample-line length; for multi-line 
samples average maximum throws and line lengths are used. 
Maximum throw is the throw at the right-hand end of the straight-line 
segment of the size distribution curve. (b) Exponent of the size 
distribution, C, vs number of faults per sample line. Symbols and 

notation as for Fig. 1. 

sampled vs sample-line length (Fig. 3a). The data define 
a broad band of points with a slope of ca 1.0 and upper 
and lower boundaries with sample-line length/maximum 
throw ratios of 1 and 650, respectively. This relationship 
is to be expected as larger faults are more likely to be 
encountered on longer sample lines. Most data sets on 
Fig. 3(a) lie in the centre or lower part of the band with 
ratios in the range 20-100 but do not vary sufficiently to 
give rise to a systematic variation of C. 

Sample-size range 

The crucial importance of the throw size ranges of 
samples has been demonstrated previously (Childs et al. 
1990, Gillespie et al. 1993, Walsh et al. 1994) and a 
minimum valid size range of one order of magnitude has 
been suggested. All data sets suffer to some extent from 
scale ranges limited by throw truncation at the lower end 
and incomplete sampling of larger throws at the other 
end (Pickering et al. 1994). Truncation can result in a 
decrease in C at the small end of the range, whereas 
censoring effects may result in increased C values 
towards the higher end. For seismic data, because many 
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seismic surveys of reservoirs are bounded by major 
faults, which are excluded from the data area, large 
throws may either be under-sampled or not sampled at 
all (Childs et al. 1990). Large faults may be excluded 
from outcrop samples because they are preferentially 
eroded and therefore tend to terminate sample lines. As 
these factors can modify and degrade both the upper and 
lower ends of straight-line segments of population 
curves, they reduce the effective scale range of the data. 
Table 1 shows that size ranges for individual outcrop 
data sets can be up to three-four orders of magnitude, 
e.g. 4 m m - l l  m, while the size ranges of coal-mine and 
seismic data sets are generally, less than two orders of 
magnitude. For our selected data sets, with well-defined 
truncation values, the limited scale ranges could explain 
some of the steepening of population slopes for coal- 
mine and seismic data sets. 

Large scale range populations from outcrop are un- 
likely to give high C values, since a value close to 1.0 for 
a size range > two orders of magnitude would require 
more than 100 faults in the sample. So many faults 
require either a very long sample line or a very high fault 
density, neither of which is usual for either natural 
outcrop or quarry samples. Furthermore, good popu- 
lation curves with low C values require large scale range 
data sets, so low C values are less likely to be obtained 
from seismic data than from outcrop data because of the 
typically greater scale ranges of the latter. However, 
when outcrop and seismic samples of the same scale 
range are compared, slopes from seismic data are still 
generally higher than those from outcrop data. There 
are, however, more fundamental reasons which might 
be responsible for, or contribute to, the observed re- 
lationship between slope and fault size. 

GEOLOGICAL EFFECTS 

Spatial distribution o f  faults 

Some types of spatial distribution of faults could lead 
to systematic differences of size distribution between 
samples on different scales (see Peacock & Sanderson 
1994), so that a sample is 'representative' of the fault 
system only on its own particular scale. Although tech- 
niques have been proposed for analysing spatial distri- 
butions of faults in one-dimensional samples (e.g. Velde 
et al. 1990) they are of doubtful validity and fault 
clustering has not been satisfactorily quantified (Gilles- 
pie et al. 1993). It is therefore not known whether or not 
clustering is scale dependent. In a clustered fault system, 
the size distributions sampled either by line sampling 
(one-dimensional) or by map sampling (two- 
dimensional) may vary with sample position relative to 
clusters. In these circumstances, sub-sets of line samples 
may each provide populations with different character- 
istics, each of which is 'unrepresentative' either of the 
whole sample or of the fault system as a whole. Without 
a quantitative description of the systematics of fault 
spatial distributions, it is not possible to determine 
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Fig. 4. Exponent of the size distribution, C, vs fault density for 
sub-samples of the Star Crossing data set. This data set contained 251 
faults measured over a total sample-line length of 12 m and was sub- 
sampled using a 4 m wide window moved in 1 m increments. Window 
centres were positioned at distances of 2-10 m along the sample line to 
produce nine sub-samples, eight of which provided sufficient data 
(>25 faults) and are plotted as open triangles. Densities represent the 
number of faults observed per metre of sample-line length. The 
average number of faults in each sub-sample is 94. Open circle shows 

the density and slope for the entire sample. 

whether or not population?characteristics, including 
power-law slopes, vary with scale. 

The combined effects of fault density and sample-line 
length have been considered above in terms of data sets 
from a variety of sources, but these effects can also be 
investigated by sub-sampling large single data sets. The 
Star Crossing data set, with throw data for 251 faults, has 
been sub-sampled using 4 m windows moved in 1 m 
increments along the 12 m sample-line, and Fig. 4 shows 
plots of C and of density for the sub-samples. Sub- 
samples which provided acceptable curves with > 25 
faults show a broad correlation between density and C, 
with the highest C value recorded for the highest density 
sample window. A similar result is given by the map data 
in Yielding etal. (1992) which show that both the density 
and population characteristics (including value of C) of 
each sub-area differ from those of the whole map area. 
This density variation reflects the heterogeneous nature 
of fault arrays when sampled at smaller scales, e.g. 
outcrop, although the population characteristics of a 
larger scale sample, e.g. reservoir seismic, may well be 
'representative' of a larger area. The increase in vari- 
ability with decrease in scale is compatible with popu- 
lation curves projected to smaller scales representing 
only an average of the many different small scale popu- 
lations (Fig. 5). By analogy with Star Crossing and with 
the map data of Yielding et al. (1992), it is feasible that 
sub-areas of low fault density not only have shallower 
power-law slopes but represent a relatively large pro- 
portion of the whole sample area. Areas of higher fault 
density, on the other hand, may be characterized by 
steep population curves and will therefore have exagger- 
ated effects on population curves for entire populations. 

The variability of densities and other fault population 
attributes at smaller scales is illustrated in Fig. 5 for fault 
throw populations from a North Sea oilfield, derived 
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displacement population curves for faults mapped from three- 
dimensional seismic data and in core (labelled), for the same oilfield 

(data from Walsh et al. 1991). 

from seismic data and from cores. The range of core 
derived fault densities extends down to the density of the 
non power-law curve but straddles that of the extrapo- 
lated power-law seismic data curve. The lowest density 
population curve also has the lowest C value which is 
consistent with sympathetic variation of C and of density 
at small scales. 

Lithological control 

With the exception of the Flamborough Head data 
set, the data sets used are for faults which have large 
vertical extents relative to lithological variations on the 
scale of individual beds; the results obtained are there- 
fore not affected by this scale of litho!ogical variation. 

At larger scales, the population characteristics of 
faults may be influenced by the mechanical properties of 
a faulted sequence (Peacock & Sanderson 1994) and the 
thickness systematics of sedimentary sequences could 
influence the scaling of  within-sequence faults by intro- 
ducing a characteristic length scale (e.g. Gillespie et al. 
1993, fig. 2e). The absence of a characteristic length 
scale is crucial to formation of power-law, or fractal, 
populations. In an individual data set, sequence effects 
are likely to be more significant at smaller scales, and 
some variation of C might be expected in populations of 
small faults derived from outcrop or core (Walsh et al. 
1994). Less competent layers will accommodate a rela- 
tively higher proportion of strain by plastic processes 
than by faulting. More competent units may contain 
more faults, the sizes and spatial distributions of which 
may be controlled by layer thickness. Fault densities and 
population characteristics measured in outcrop or core 
could, therefore, be systematically different from those 
predicted by extrapolation from seismic data. Our data 
do not, however, provide evidence to suggest that the 

relationship between C and mid-point throw (Fig. 1) 
could be accounted for by lithological factors. 

Temporal changes in C 

On the bases of numerical modelling (Cowie et al. 
1993, 1994) and outcrop data (Wojtal 1994, 1996), it has 
been suggested that C decreases as a fault system evolves 
due to progressive concentration of strain onto large 
faults. A relationship of this type is difficult to reconcile 
with maintenance of a power-law earthquake popu- 
lation throughout the life of a fault system (Walsh & 
Watterson 1992). If the strain accommodated by a fault 
system is taken as a measure of maturity, then the higher 
strains associated with our off-shore North Sea data sets, 
compared with the onshore outcrop and coal-mine data 
sets, indicate that the off-shore fault systems are more 
mature than the on-shore fault systems which we have 
sampled. As the C values for the off-shore systems are 
generally higher than those for the on-shore faults, our 
data are inconsistent with the C values having a largely 
temporal control, although our data do not exclude the 
possibility of a C value which decreases with growth of 
an individual fault system. 

DISCUSSION AND CONCLUSIONS 

We have examined possible sampling biases due to 
spatial variations in fault density, sample-line length, 
data resolution, sequence lithology and differences in 
sampling methodology between, or within, different 
data types, i.e. outcrop, coal-seam plan and seismic 
interpretation. It is concluded that the general decrease 
in C value with decreasing fault size cannot be ascribed 
to sampling bias alone. Data sets which become avail- 
able in the future may show that C-values for outcrop 
samples can range up to those typical for seismic data 
sets more often than our data indicate. 

The apparent relationship between fault size and C 
could indicate that fault size populations are not power- 
law but conform to a fault scaling law represented by the 
gentle convex-upwards curve shown in Fig. 5 which is 
consistent with the relationship between C and fault size 
indicated by Fig. 1. The non-power-law empirical curve 
is derived by least-squares regression of the data in Fig. 
1, from which C = 0.07 log(t) + 0.68 (C = -s lope and t 
= mid-point throw), and pinning the curve to the mid- 
point throw of the seismic data. The curvature of the 
empirical curve is so slight that, over two orders of 
magnitude of fault size, it is practically indistinguishable 
from a straight line. For most practical purposes, the 
distinction between the curve and a straight line is 
unimportant so long as extrapolations are restricted to 
ca two orders of magnitude. A non-power-law relation- 
ship would indicate that either different processes or 
different controls are effective on different scales. Simi- 
larly, the concentrations of small faults immediately 
adjacent to larger faults, sometimes collectively referred 
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to as damage zones, may provide distinct size popu- 
lations (e.g. Knipe et al. 1994). 

An additional realistic possibility is that fault size 
populations are power-law, but show greater ranges of C 
values and densities at smaller scales due to the spatial 
systematics of the fault distribution. Clustered fault 
systems provide increasingly heterogeneous fault den- 
sities at smaller scales (Gillespie et al. 1993). Sympath- 
etic variation of C with fault density would, for a given 
fault system, provide a higher proportion of low C value 
populations at outcrop scale than at a larger sampling 
scale. Although a fault system may show a range of fault 
densities and slopes for different outcrop scale samples, 
a larger scale power-law population curve would still be 
'representative' of the system as a whole. The hetero- 
geneity of fault densities and populations at smaller 
scales is illustrated by the range of core-derived fault 
densities shown in Fig. 5. 

The available data suggest that size population slopes 
of outcrop scale samples are usually shallower than 
those for larger scale samples. This difference may 
reflect either a non-power-law scaling law for fault size 
distribution, or the spatial systematics of fault arrays at 
smaller scales. 
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